Lecture 20 : Linear Differential Equations

A First Order Linear Differential Equation is a first order differential equation which can be put in the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

where $P(x), Q(x)$ are continuous functions of x on a given interval.
The above form of the equation is called the Standard Form of the equation.
Example Put the following equation in standard form:

$$
x \frac{d y}{d x}=x^{2}+3 y
$$

To solve an equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

we multiply by a function of of x called an Integrating Factor. This function is

$$
I(x)=e^{\int P(x) d x}
$$

(we use a particular antiderivative of $P(x)$ in this equation.)
$I(x)$ has the property that

$$
\frac{d I(x)}{d x}=P(x) I(x)
$$

Multiplying across by $I(x)$, we get an equation of the form

$$
I(x) y^{\prime}+I(x) P(x) y=I(x) Q(x)
$$

The left hand side of the above equation is the derivative of the product $I(x) y$. Therefore we can rewrite our equation as

$$
\frac{d[I(x) y]}{d x}=I(x) Q(x) .
$$

Integrating both sides with respect to x, we get

$$
\int \frac{d[I(x) y]}{d x} d x=\int I(x) Q(x) d x
$$

or

$$
I(x) y=\int I(x) Q(x) d x+C
$$

giving us a solution of the form

$$
y=\frac{\int I(x) Q(x) d x+C}{I(x)}
$$

(we amalgamate constants in this equation.)
Example Solve the differential equation

$$
x \frac{d y}{d x}=x^{2}+3 y
$$

Example Solve the initial value problem

$$
y^{\prime}+x y=x, \quad y(0)=-6 .
$$

